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1 Examples of bases and dimensions

Last lecture we stated the result that each basis has the same number of vectors. From this

result very important corollary follows.

Corollary 1.1. If the dimension of the vector space V is equal to n: dim V = n, then any n

linearly independent vectors form a basis.

Corollary 1.2. If the dimension of the vector space V is equal to n: dim V = n, then any n

vectors which span all the vector space form a basis.

Now we’ll consider some examples.

Examples of bases in R2.

Example 1.3. The easiest basis in R2 is a basis u1 = (1, 0), and u2 = (0, 1). These vectors

are linearly independent, and span R2. So, we have 2 vectors in the basis of R2, and thus

dimR2 = 2. This particular basis is called standard basis.

Now we can take any pair of linearly independent vectors and it will be a basis.

Example 1.4 (Slight modification of standard basis). Let u1 = (0, 5) and u2 = (1, 0).

This slight modification of the standard basis is a basis itself, since it contains 2 vectors, and is

linearly independent. Moreover, we can see that any vector (a, b) can be represented as a linear

combination of u1 and u2 in the following way:

(
a

b

)
=

b

5
u1 + au1 =

b

5

(
0

5

)
+ a

(
1

0

)

Example 1.5 (Less trivial example of basis). Let u1 = (1, 1) and u2 = (0, 1). This is

a basis since there are 2 vectors and they are linearly independent. We can check that these
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vectors are linearly independent by forming a linear combination which is equal to 0 and proving

that this combination is trivial.

x

(
1

1

)
+ y

(
0

1

)
=

(
0

0

)
.

This is equivalent to the following system which has unique zero solution:{
x = 0

x + y = 0

So, the linear combination should be trivial, and vectors are independent.

Example 1.6 (Even more nontrivial example of basis for R2). Consider the following

pair of vectors u1 = (1, 2), and u2 = (3, 5). To check that this is a basis we have to prove that

these 2 vectors are linearly independent. So, again we form a linear combination:

x

(
1

2

)
+ y

(
3

5

)
=

(
0

0

)
.

and try to find x’s and y’s —coefficients of linear combination. In order for this set to be

linearly dependent, coefficients should not be zeros simultaneously. The expression above is

equivalent to the following system of linear equation.{
x + 3y = 0

2x + 5y = 0

To solve this system let’s first subtract the first equation multiplied by 2 from the second one.

We’ll get: {
x + 3y = 0

− y = 0

Again we see that this system has unique zero-solution, and thus vectors are linearly indepen-

dent. So, they form a basis for R2.

2 Standard bases

Let’s consider different examples of vector spaces and find a basis of it.

2.1 Rn

The basis of Rn — the set of all n-tuples is the following. It contains the following n vectors:

e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),

e3 = (0, 0, 1, . . . , 0, 0), . . . ,

en−1 = (0, 0, 0, . . . , 1, 0), en = (0, 0, 0, . . . , 0, 1)
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where the vector ei has 1 on the i-th place and zeros on all other places. One can easily check

that these vectors are linearly independent. So,

dimRn = n

2.2 Pn

The basis of Pn — the set of all polynomials of degree less or equal to n is the following. It

contains the following n + 1 vectors:

e0 = 1, e1 = t, , e2 = t2, . . . ,

en−1 = tn−1, tn = tn

where the vector ei is the i-th power of t. One can easily check that these vectors are linearly

independent. So,

dimPn = n + 1

2.3 Mm,n

The basis of Mm,n — the set of all m × n-matrices is the following. It contains the following

mn vectors:

e1,1 = I1,1, e1,2 = I1,2, , . . . ,

ei,j = Ii,j, . . .

where the vector ei is the matrix with 1 on the (i, j)-th place and 0’s on all other places. One

can easily check that these vectors are linearly independent. So,

dim Mm,n = mn

For example, the basis of M2,2 consists of the following 2× 2 = 4 vectors:

e1,1 =

(
1 0

0 0

)
, e1,2 =

(
0 1

0 0

)
, e2,1 =

(
0 0

1 0

)
, e2,2 =

(
0 0

0 1

)

We see that each 2× 2-matrix can be represented as a linear combination of these 4 matrices:

(
a b

c d

)
= ae1,1 + be1,2 + ce2,1 + de2,2 = a

(
1 0

0 0

)
+ b

(
0 1

0 0

)
+ c

(
0 0

1 0

)
+ d

(
0 0

0 1

)

All bases given in this section are called standard bases.
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3 Dimension and basis of the span

We’ll start this section with an example to show what are we going to find and which problem

do we want to solve.

Example 3.1. Consider the vector space R2, and let u1 = (1, 0), u2 = (0, 1), and u3 = (1, 1).

What is the span of these 3 vectors? It is obvious that these vectors spans all R2 since each

vector from R2 can be represented as a linear combination of them. But dimR2 = 2. So, we

see that dim span(u1, u2, u3) = 2 — not equal to the number of vectors.

Example 3.2. Consider the vector space R2, and let

u1 = (1, 1, 3, 2),

u2 = (0, 2,−1, 1),

u3 = (1, 3, 2, 3),

u4 = (1,−1, 4, 1)

What is the span of these 4 vectors? We can easily see that

u3 = u1 + u2, and

u4 = u1 − u2.

So, u3 ∈ span(u1, u2) and u4 ∈ span(u1, u2). So we conclude that we don’t need these 2 vectors

u3 and u4 — everything which can be expressed as a linear combination of u1, u2, u3, and u4

can be expressed as a linear combination of u1 and u2 only:

v = au1 + bu2 + cu3 + du4

= au1 + bu2 + c(u1 + u2) + d(u1 − u2).

And vectors u1 and u2 are linearly independent. So, in this example span(u1, u2, u3, u4) =

span(u1, u2), and dim span(u1, u2, u3, u4) = 2.

So, our problem is the following. Suppose, we’re given set of n vectors in V . We want to

find maximal linearly independent subset — it is a basis for the span of all these n vectors, and

the number of vectors in this subset is the dimension of the span.

We will formulate the problem in a strict way now.

Let V be a vector space. Let u1, u2, . . . , um — be vectors in V . Consider the span of

these vectors 〈u1, u2, . . . , um〉 — all vectors which can be represented as a linear combination

of vectors ui’s. Our problem is

• to find the dimension of a span

• to find the basis of span

Now, when we stated our problem we can develop the theory which will help us to solve it.
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3.1 Elementary operations with vectors

Let we have m vectors from the vector space V : u1, u2, . . . , um ∈ V . Consider the span of them

and let’s see does it change when we’are changing the vectors. These changes of vectors will be

called elementary operations and there will be 3 types of them.

Type 1. Interchanging of vectors. Let’s interchange vectors ui and uj, i.e. let’s change the

order of them. Then the span will not change:

〈u1, . . . , ui, . . . , uj, . . . , um〉 = 〈u1, . . . , uj, . . . , ui, . . . , um〉

It means that everything which can be expressed as a linear combination of the vectors in

unchanged order, can be expressed as a linear combination of vectors in different order — it is

obvious!

So, this elementary operation being applied to the set of vectors doesn’t change its span.

Type 2. Multiplication of a vector by a number. Let c 6= 0, and let’s multiply the vector

ui by c. Then

〈u1, . . . , ui, . . . , um〉 = 〈u1, . . . , cui, . . . , um〉
To prove it let’s consider a vector which can be represented as linear combination of unchanged

system of vectors:

v = x1u1 + · · ·+ xiui + · · ·+ xmum — linear combination of unchanged vectors.

Then

v = x1u1 + · · ·+ xi

c
(cui) + · · ·+ xmum — linear combination of changed vectors.

So, if we multiply the vector by a number, we should divide the coefficient by the same number.

Moreover, if a vector can be represented as a linear combination of the changed vectors, it can

be represented as a linear combination of unchanged vectors: if

v = y1u1 + · · ·+ yi(cui) + · · ·+ ymum — linear combination of changed vectors

then

v = y1u1 + · · ·+ (cyi)ui + · · ·+ xmum — linear combination of unchanged vectors.

So, this elementary operation being applied to the set of vectors doesn’t change its span.

Type 3. Addition of a vector multiplied by a number to some other vector. Let’s

add vector uj multiplied by some number k to the vector ui. Now instead of the old set of

vectors {u1, . . . , ui, . . . , uj, . . . , um} we’ll have a set {u1, . . . , ui +kuj, . . . , uj, . . . , um}. Then the

spans of these to sets of vectors are the same:

〈u1, . . . , ui, . . . , uj, . . . , um〉 = 〈u1, . . . , ui + kuj, . . . , uj, . . . , um〉
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Let’s prove it. Let a vector v can be expressed as linear combination of the vectors from

unchanged set:

v = x1u1 + · · ·+ xiui + · · ·+ xjuj + · · ·+ xmum.

Then v can be represented as a linear combination of the vectors from the changed set in the

following way:

v = x1u1 + · · ·+ xi(ui + kuj) + · · ·+ (xj − kxi)uj + · · ·+ xmum.

We’ll give an example. Vector (2, 4) can be represented in the following way:

(2, 4) = 2(1, 0) + 4(0, 1).

Now let’s add the second vector multiplied by 3 to the first vector — we’ll have vectors

(1, 3), (0, 1). Let’s represent (2, 4) as a linear combination of these changed vectors.

(2, 4) = 2(1, 3) + (4− 3 · 2)(0, 1) = 2(1, 3)− 2(0, 1).

In the similar way we can prove that any vector which can be represented as a linear combination

of changed set of vectors, can be represented as a linear combination of the initial set of vectors.

So, this elementary operation being applied to the set of vectors doesn’t change its span.
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